

SERIE: 3D-MODELLIEREN

EINLEITUNG

Was noch vor wenigen Jahren unvorstellbar war ...

Moderne Computertechniken erlauben es heute, nahezu alle realen Vorgänge des Raumes zu simulieren (Virtual Reality).

Mit leistungsfähiger 3D-CAD-Software und modernen Computeranlagen ist man in der Lage, Objekte im virtuellen Raum zu generieren und mit diesen zu operieren (Bohren, Fräsen u.a.).

Dies verlangt im Konstruktionsbereich einschneidende Veränderungen.

Unverzichtbare Voraussetzung für die "neue Art des Planens, Konstruierens …" ist neben den Fertigkeiten im Umgang mit dem Werkzeug "Computer" eine bestens ausgebildete Raumvorstellung und die stufenweise Vorbereitung auf das sogenannte "3D-Modellieren".

Für beides ist der moderne GZ/DG-Unterricht zuständig!

Für den Grundunterricht in GZ/DG steht einfache und kostengünstige Software wie z.B.
GAM = Generieren – Abbilden – Modellieren (E. Podenstorfer, HTL Graz-Ortweinschule)
CAD-3D (H. Stachel, TU Wien)
zur Verfügung.

Diese Beispielserie soll einen ersten Einblick in die Arbeitsweise von 3D-CAD-Software geben.

Wichtige Hinweise

Prinzip des "Modellierens"

Die 3D-CAD-Programme bieten eine Reihe fertiger Grundobjekte (auch Primitive, Solids genannt) an.

Diese werden transformiert (Skalieren, Verschieben, Drehen, ...).

Mittels BOOLEscher Operationen (Mengenoperationen) entsteht das konkrete Objekt (Sollteil). Davon lassen sich mit dem Programm nach Belieben Normalrisse, Axonometrien und Perspektiven erzeugen.

Die vorliegenden Geometrie-Informationen über das Objekt (auch Geometriedaten genannt) sind der mögliche Ausgang für den weiteren Produktionsablauf (Materialwahl, Fertigung u.a.).

Empfehlung für den Unterricht

Vorerst sollten bekannte praktische Objekte – beginnend mit einfachstem Schwierigkeitsgrad - nach ihren geometrischen Grundstrukturen untersucht werden.

weiter auf der nächsten Seite!

SERIE: 3D-MODELLIEREN

EINLEITUNG

Des Weiteren wird empfohlen, die 3D-Modellierung in mehreren Stufen zu vollziehen:

- 1. Planung mittels Modelliertabelle
- 2. Umsetzung mit einem 3D-CAD-Programm
- 3. Dokumentation, beinhaltend
 - + praktischer Einsatz
 - + Protokolle
 - + ausgedrucktes Bildmaterial, welches auch händisch nachbearbeitet und gestaltet werden kann

Schnittstelle zur Praxis

Am Ende der Geometrie-Ausbildung kann in Einzel-, Partner- oder Gruppenarbeit ein komplexeres Projekt mit starkem Praxisbezug durchgeführt werden.

Ein konkretes **Projektbeispiel** ist als MS PowerPoint-Präsentation *3dwgdemo.ppt* in der vorliegenden Aufgabensammlung enthalten.

Kommentar zur Beispielserie

Die Beispiele wurden mit dem Programm GAM entwickelt, können aber ebenso mit jeder anderen 3D-CAD-Software nachvollzogen werden.

Hinweise zur Planungsphase

Der verwendete Raster *gam-tabelle.xls* (bzw. *gam-tabelle.doc*) als Vorlage für die Modelliertabelle wurde in MS Excel 97 (bzw. in MS Word 97) verfasst; die zwei Versionen sind in der beiliegenden ZIP-Datei verfügbar.

Dateien	gam-tabelle.xls (Excel 97), gam-tabelle.doc (Word 97)
	3dwademo.ppt (PowerPoint 97), 3dwa*.zip (WinZip 7.0)

ADI	SERIE: 3D-MODELLIEREN
GZ/DG	BSP 1/11 - PLATTE MIT NASE
Angabe	siehe Vorschaubild
	Maße: Raster mit Einheitswürfel sind vorhanden
Anwendungsbereich Querverbindungen	Maschinenbau, Bauwesen
Voraussetzungen	Kenntnisse über Rechtssystem, Axonometrie
Lehrziele	Grundlagen des 3D-Modellierens kennen lernen
Didaktische Hinweise	Mit Modelliertabelle planen oder den schrittweisen Ablauf nachträglich protokollieren
	mit Modellbau kombinierbar
Dateien	nase.dwg (AutoCAD 14), 3dwgnase.gif

Modelliertabelle

	OBJ	EKT	E	TRANSFORMATIONEN															BOOLESCHE
Schritt					Trans	slation			F	Rotatio	n		Sł	alieru	ing	S	cherui	ng	OPERATIONEN
Nr	Bezeichnung	Kn	Maße	Х	у	Z	kop	Х	у	Z	g	kop	Х	у	Z	Z	Х	у	
1	QUADER	K1	20x60x50																
2	QUADER	K2	10x20x10																
3		K2		20	20	20													
4	SOLLTEIL	K3																	K1 ∪ K2

Schritt 1

Schritt 2

Sollteil

ADI	SERIE: 3D-MODELLIEREN
GZ/DG	BSP 2/11 - WERKSTÜCK
Angabe	siehe Vorschaubild
	Maße: Raster mit Einheitswürfel sind vorhanden
Anwendungsbereich Querverbindungen	Maschinenbau
Voraussetzungen	Kenntnisse über Rechtssystem, Axonometrie
Lehrziele	Grundlagen des 3D-Modellierens kennen lernen
Didaktische Hinweise	Mit Modelliertabelle planen oder den schrittweisen Ablauf nachträglich protokollieren
	Variante: ausdrucken und händisch nachbearbeiten lassen
Dateien	wkst.dwg (AutoCAD 14), wkst8.dxf (GAM 8.2), 3dwgwkst.gif

Modelliertabelle

	OBJI	ΞΚΤ	E						TRA	NSFO	RMA	TIONE	N						BOOLESCHE
Schritt					Trans	slation			F	lotatio	n		Sk	alieru	ng	So	cheru	ng	OPERATIONEN
Nr	Bezeichnung	Kn	Maße	Х	у	Z	kop	Х	у	Z	g	kop	х	у	Z	Z	Х	у	
1	QUADER	K1	30x50x40																
2	QUADER	K2	10x10x40																
3		K2		30	0	0													
4		K3																	K1 ∪ K2
5	ZYLINDER	K4	r=10, h=40																
6		K4		30	30	0													
7	SOLLTEIL	K5																	K3 \ K4

ADI	SERIE: 3D-MODELLIEREN
GZ/DG	BSP 3/11 - SCHRAUBE (OHNE GEWINDE)
Angabe	siehe Maßskizze unten
Anwendungsbereich Querverbindungen	Maschinenbau
Voraussetzungen	Kenntnisse über Rechtssystem, Axonometrie, Hauptrisse und einfache Bemaßung
Lehrziele	Grundlagen des 3D-Modellierens kennen lernen
Didaktische Hinweise	Mit Modelliertabelle planen oder den schrittweisen Ablauf nachträglich protokollieren
Dateien	schraube.dwg (AutoCAD 14), 3dwgsrk.gif

Modelliertabelle

	OBJ	EKT	E	TRANSFORMATIONEN															BOOLESCHE
Schritt					Trans	slation			R	otatio	n		Sk	alieru	ing	S	cheru	ng	OPERATIONEN
Nr	Bezeichnung	Kn	Maße	Х	у	Z	kop	Х	у	Z	g	kop	Х	у	Z	Z	х	у	
1	RGM.6S-PRISMA	K1	s=20, h=10																
2		K1						0	0	30									
3	ZYLINDER	K2	r=13, h=30																
4		K2		0	0	10													
5		K3																	K1+K2
6		K3						0	90	0									
7																			

ADI	SERIE: 3D-MODELLIEREN
GZ/DG	BSP 4/11 - GUMMIDICHTLEISTE
Angabe	siehe Maßskizze des Profiles (Einheit: 1/10 mm)
	Tiefe (= x-Maß) nach eigener Wahl (z.B. 40)
Anwendungsbereich Querverbindungen	Maschinenbau
Voraussetzungen	Kenntnisse über Rechtssystem, Axonometrie, Hauptrisse und einfache Bemaßung
Lehrziele	Grundlagen des 3D-Modellierens kennen lernen
	Eigene Grundkörper (Primitive) erzeugen können
Didaktische Hinweise	 Der Grundkörper "Keil" ist nicht in allen 3D-CAD-Programmen verfügbar. Teil A zeigt die Lösung des Problems.
	 Mit Modelliertabelle planen oder den schrittweisen Ablauf nachträglich protokollieren
	Einige CAD-Programme lassen mit der Variante "Fasen" einen anderen Lösungsweg zu, der hier nicht beschrieben wird.
Dateien	leiste.dwg (AutoCAD 14); l22.dxf, keil.dat (GAM 8.2); 3dwggumm.gif

A. GRUNDKÖRPER "KEIL"

Modelliertabelle

	OBJI	ΞΚΤ	E						TRA	NSFO	RMA	ΓΙΟΝΕ	IN						BOOLESCHE
Schritt					Trans	lation			F	lotatio	n		Sk	alieru	ng	So	cheru	ng	OPERATIONEN
Nr	Bezeichnung	Kn	Maße	Х	у	Z	kop	Х	у	Z	g	kop	Х	у	Z	Z	Х	у	
1	WÜRFEL	K1	s=10																
2	QUADER	K2	10x20x10																
3		K2		0	-10	0													
4		K2									315								
5	KEIL	K3																	K1\K2
6																			
7																			

Der Grundkörper kann sodann als Datei "keil.dat" abgespeichert werden und steht künftig als neuer Teil zur Verfügung.

B. GUMMIDICHTLEISTE

	OB	JEKT	E						TRA	NSFO	RMA	TIONE	IN						BOOLESCHE
Schritt					Trans	lation			F	Rotatio	n		Sk	alieru	ng	S	cheru	ng	OPERATIONEN /
Nr	Bezeichnung	Kn	Maße	Х	у	Z	kop	Х	у	Z	g	kop	Х	у	Z	Z	Х	у	ANMERKUNGEN
1	QUADER	K1	100x110x40																
2	KEIL	K2																	
3		K2											10	-2	-3				2-fach-Spiegelung
4		K2		0	110	40													
5		K3																	K1 \ K2
6	QUADER	K4	100x12x8																
7		K4		0	58	32													
8		K5																	K3 \ K4
9	QUADER	K6	100x10x20																
10		K6		0	0	20													
11		K7																	K5 \ K6
12	ZYLINDER	K8	r = 15, h = 100																
13		K8						0	90	0									
14		K8		0	70	0													
15		K9																	K7 \ K8
16	ZYLINDER	K10	r = 8, h = 100																
17		K10						0	90	0									
18		K10		0	28	20													
19	SOLLTEIL																		K9 \ K10

Lösungsschritte auf den nächsten beiden Seiten !

H D	SERIE: 3D-MODELLIEREN
GZ/DG	BSP 5/11 - SCHACHT
Angabe	Zwischen zwei Schächten mit unterschiedlichen lichten Weiten, die entlang einer Mauerkante geführt werden, soll ein geeignetes Übergangsstück gefunden werden.
	Welche Form und Maße hat es ? Wie kann man es durch Modellieren erzeugen?
	Angabe in Form einer Maßskizze siehe nächste Seite !
Anwendungsbereich Querverbindungen	Anlagenbau
Voraussetzungen	Kenntnisse über Rechtssystem, Axonometrie, Hauptrisse und einfache Bemaßung
Lehrziele	Grundlagen des 3D-Modellierens kennen lernen
Didaktische Hinweise	 Diskussion über die Möglichkeiten des Verbindungsstückes nötig (Querverbindung zur Mathematik)
	Form und Größe des Zwischenstückes in einer Ansicht herleiten
	mit Modelliertabelle planen
Dateien	eowgsct.dwg (AutoCAD 14), sch7.dxf (GAM 8.2), 3dwgscha.gif

ANGABE

Skizze; Maße in cm

Als Zwischenkörper kann ein schiefer Pyramidenstumpf verwendet werden. Durch eine geeignete Scherung (80/-20/-20) wird aus der geraden die passende schiefe Pyramide.

Scherung:

Alle Punkte mit der z-Koordinate z werden um den Vektor v = (x, y, 0)verschoben. Alle Punkte mit der z-Koordinate c werden um den Vektor c/z * v verschoben

Die Vereinigung mit dem oberen Schacht erzeugt den Stumpf.

Die Höhe der gesuchten Pyramide ermittelt man mittels Proportion (Strahlensatz):

Modelliertabelle

	OBJI	EKT	E						TRA	NSFO	RMA	TIONE	N						BOOLESCHE
Schritt					Trans	slation			F	Rotatio	n		Sk	alieru	ng	S	cheru	ng	OPERATIONEN
Nr	Bezeichnung	Kn	Maße	Х	у	Z	kop	Х	у	Z	g	kop	х	у	Z	Z	х	у	
1	QUADER	K1	40x40x(-50)																
2	QUADER	K2	30x30x80	0	0	20													
3		K2																	
4	GER.QU.PYRAMIDE	K3	s=40, h=80																
5		K3														80	-20	-20	
6		K4																	K2∪K3
7	GESAMTOBJEKT	K5																	K1∪K4

Lösungsbilder siehe nächste Seite !

Lösungsbilder zur Modelliertabelle

HD	SERIE: 3D-MODELLIEREN
GZ/DG	BSP 6/11 - SCHREIBTISCHBOX
Angabe	Das größte Element dieser Box ist ein Quader mit den Maßen 25x50x85 mm. Die Maße der restlichen Elemente sind durch Beobachtung dem Vorschaubild zu entnehmen oder selbst zu wählen.
Anwendungsbereich Querverbindungen	Design
Voraussetzungen	Kenntnisse über Rechtssystem, Axonometrie
Lehrziele	Grundlagen des 3D-Modellierens, insbesondere das Generieren und Manipulieren von Flächenmodellen kennen lernen
Didaktische Hinweise	 Die Einzelteile sind Flächenmodelle, daher sind keine Mengenoperationen möglich! (In GAM ist ein Quader ein Volumsmodell, deshalb wurde als Startfläche ein regelmäßiges Prisma eingesetzt!)
	Das Beispiel soll anregen, verschiedene Design-Lösungen zu finden.
	Mit Modelliertabelle planen
Dateien	3dwgbox.gif

Modelliertabelle

	OBJE	KTE	1							TRAN	ISFO	RMA	TION	EN							FLÄCHEN !
					Trans	latior	۱		Rotation					Skali	erung			Sche	erung		KEINE MENGEN-
Nr	Bezeichnung	Kn	Maße	х	у	Z	kop	х	у	Z	g	kop	Х	у	Z	kop	Х	у	Z	kop	OPERATIONEN !
1	Rgm. Prisma	K1	n=4; s=50; h=85																		
2		K1								45°											
3		K1											0.5	1	1						
4	K2 aus	K1		25	0	0	1x														
5	K3 aus	K1											1	1	0.5	1x					
6		K3		50	0	0															
7	K4 aus	K1											1	0.5	<mark>1/3</mark> 1)	1x					
8		K4		0	37.5	0															
9	K5, K6 aus	K4		25	0	0	2x														
10	Sollteil																				K1, K2, , K6

1) auch Terme sind möglich!

Lösungsbilder siehe nächste Seite !

AD	SERIE: 3D-MODELLIEREN
GZ/DG	BSP 7/11 - VERSCHNEIDUNG VON BALKEN
Angabe	Ausgangslage:
	Balken 1 (6-Kant-Prisma): s = 13, l = 50; y-Lage
	Balken 2 (4-Kant-Prisma): s = 17, l = 50; x-Lage
	Man variiere die gegenseitige Lage der beiden Prismen und untersuche bzw. beurteile die unterschiedlichen Verschneidungsfälle.
	Dabei sollen die BOOLEschen Operationen "Vereinigung, Differenz und Durchschnitt" erprobt werden.
Anwendungsbereich Querverbindungen	Bauwesen (Holztechnik)
Voraussetzungen	Kenntnisse über Rechtssystem, Axonometrie, Hauptrisse, Grundlagen des ebenen Schnittes
Lehrziele	Verschneidungs- und Ausführungsvarianten kennen lernen
Didaktische Hinweise	Die Ausdrucke auf Papier können nachbearbeitet werden (Linien, Farbe).
Dateien	3dwgbalk.gif, balk2.gif, balk3.gif, balk4.gif

AUSGANGSLAGE	
LAGE 1:	
 Vereinigung / Axo Differenz 	

Ein Teil der Bilder sind als Drahtmodelle beigefügt und können so händisch nachbearbeitet werden !

ADI	SERIE: 3D-MODELLIEREN
GZ/DG	BSP 8/11 - BAUMHAUS (PRISMENVERSCHNEIDUNG)
Angabe	siehe Angabeblatt
Anwendungsbereich Querverbindungen	Bauwesen
Voraussetzungen	Kenntnisse über
	Rechtssystem, Axonometrie und Hauptrisse;
	 geometrische Eigenschaften des rechtwinkeligen Dreiecks; Winkelfunktionen
Lehrziele	Grundlagen des 3D-Modellierens kennen lernen
Didaktische Hinweise	 Geometrische Eigenschaften eines Würfels mit den wichtigen Maßen für diese Raumlage erarbeiten
	Mit Modelliertabelle Verschneidung planen
Dateien	3dwgbaum.jpg; baumhaus1,2.dwg (AutoCAD 14)

380

Architekt Piet BLOM hat in Helmond, Niederlande eine Siedlung geplant.

Jedes Einzelgebäude (Wohnhaus, Spielhaus ..) sollte die Form eines Baumes haben. Als "Stamm" dient ein regelmäßiges sechsseitiges Prisma, als "Baumkrone" fungiert ein Würfel mit erstprojizierender Raumdiagonale. Zu beachten ist auch die Lage des sechsseitigen Prismas zum Würfel.

Mathematisch wertvoll - im Sinne der Vertiefung von Grundlagenwissen - ist die Tatsache, dass für diese Planung und Realisierung eine Reihe einfacher Berechnungen aus elementaren geometrischen Figuren nötig sind, und zwar:

Kipplage des Würfels, damit die Raumdiagonale erstprojizierend ist:

w = 90°-w₁

$$\tan w_1 = \frac{6.8}{6.8 * \sqrt{2}} \implies w_1 = 54.7^\circ$$

 $h = 13.8 - \sqrt{6.8^2 + 6.8^2 * 2} = 2.02$

Modelliertabelle

	OBJI						TRA	NSFC	RMA	TIONE	IN						BOOLESCHE		
Schritt					Translation				Rotation						Skalierung			ng	OPERATIONEN
Nr	Bezeichnung	Kn	Maße im m	Х	у	Z	kop	Х	у	Z	g	kop	Х	у	Z	Z	Х	у	
1	WÜRFEL	K1	s = 6.8																
2		K1						0	0	45									
3		K1						54.7	0	0									
4		K1		0	0	2.02													
5	RGM. 6S-PRISMA	K2	s = 1.9, h = 5																
6		K2						0	0	30									
7	SOLLTEIL																		K1 U K2

ADI	SERIE: 3D-MODELLIEREN
GZ/DG	BSP 9/11 - VERSCHNEIDUNG VON ZYLINDERN
Angabe	Zylinder 1: r = 30, h = 80 (Drehachse = z-Achse) Zylinder 2: r = 20, h = 80 (Drehachse in y-Richtung) (Spezialfall: r = 30) Untersuche zu den unterschiedlichen Lagen die Schnittkurven. Zeige auch die Ausführungsvarianten. Vereinigung. Differenz. Durchschnitt"
Anwendungsbereich Querverbindungen	 Maschinenbau / Bauwesen (Anlagenbau, Installationstechnik u.a.) Themenverwandt: Gewölbeformen im Bauwesen
Voraussetzungen	Handzeichnung: Durchdringungsprinzip Grundlagen des 3D-Modellierens
Lehrziele	Es sind die unterschiedlichen Schnittfälle zu untersuchen und zu bewerten.
Didaktische Hinweise	 Im Speziellen sollen die Sonderfälle + Doppelpunkt + Zerfall der Kurven höherer Ordnung in Geraden und Kegelschnittslinien besprochen werden
	 Ausdrucke auf Papier können nachbearbeitet werden (Linien, Farbe, Schattierung).
	 In der Serie "Durchdringungen", die in der vorliegenden Beispielsammlung enthalten ist, findet man eine große Auswahl an Animationen.
Dateien	3dwgrohr.jpg, gewölbe.jpg; rohr2.tif bis rohr5.tif, rohr52.tif

Fotos: M. Dopler, Reutte

Man beachte:

- Lösungsbilder sind teilweise als Drahtmodelle dargestellt und damit zur Nachbearbeitung geeignet.
- Der Modelliervorgang ist nicht beschrieben.

ADI	SERIE: 3D-MODELLIEREN												
GZ/DG	BSP 10/11 - SENKBLEI												
Angabe	Drehkegel: r = 8 mm, h = 8 mm												
	Drehzylinder: h = 50 mm												
	Zeige die Verwendung von Variablen und probiere einige Varianten aus.												
Anwendungsbereich Querverbindungen	Maschinenbau												
Voraussetzungen	Grundlagen des 3D-Modellierens; Einsatz von Variablen												
Lehrziele	Kennenlernen der Variantenkonstruktion												
Didaktische Hinweise	Alle Varianten probieren lassen												
Dateien	3dwgblei.gif												

Modelliertabelle

	OBJI						TRA	NSFO	RMA	TIONE	IN						BOOLESCHE		
Schritt					Translation				Rotation					Skalierung			cherur	ng	OPERATIONEN
Nr	Bezeichnung	Kn	Maße	Х	у	Z	kop	Х	у	Z	g	kop	Х	у	Z	Z	Х	у	
1	Erstbelegung der Variablen		r = 8 hk = 8 hz = 50																
2	Drehkegel		Radius r Höhe -hk																
3	Drehzylinder		Radius r Höhe hz																
4	Beispiel einer Variante: Neubelegung des Radius		r = 15																

Hinweise bei Verwendung von GAM

- Die Variablenbelegung wird unter dem Menüpunkt "Bearbeiten .. Variable" durchgeführt. Es dürfen die Objekte nicht vereinigt werden, solange die Varianten ausprobiert werden ! ٠
- ٠

ADI	SERIE: 3D-MODELLIEREN
GZ/DG	BSP 11/11 - RINGFLÄCHE (TORUS)
Angabe	Es ist eine Ringfläche als Drehfläche zu generieren.
	Drehachse ist die z-Achse.
	Der rotierende Meridiankreis liegt in der [xz]-Ebene und hat den Radius $r_1 = 10$, der Mittenkreisradius beträgt $r_2 = 20$.
Anwendungsbereich Querverbindungen	Maschinenbau (Anlagenbau: "Rohrkrümmer" u.a.)
Voraussetzungen	Kenntnisse über Rechtssystem, Axonometrie, Grundlagen der Flächentheorie
Lehrziele	Eine andere Möglichkeit des Generierens von Flächen mit 3D-CAD-Software und deren Grenzen kennen lernen
Didaktische Hinweise	 Die verschiedenen Erzeugungsformen eines Ringes (Torus) sind zu besprechen.
	 Von der Erzeugung durch Rotation einer Kugel (Rohrfläche) wird in einigen einfachen 3D-CAD-Programmen abgeraten, da zu große Rechnerzeiten für den Bildaufbau notwendig sind.
	 Sichtbarkeit: + Die verschiedenen Fälle des Umrisses sollen besprochen und händisch ausgefertigt werden. + Verschiedene Ansichten können ausgedruckt und individuell nachgefärbt werden.
Dateien	3dwgrng1.jpg, 3dwgrng2.jpg

Modelliertabelle

	OBJ						TRA	NSFO	RMA	TIONE	N						BOOLESCHE		
Schritt					Trans	slation			Rotation						Skalierung			ng	OPERATIONEN
Nr	Bezeichnung	Kn	Maße	Х	у	Z	kop	Х	у	Z	g	kop	Х	у	Z	Z	х	у	
1	KREIS in [xz]		r = 10																
2				20	0	0													
3	Generierung									9°		40x							

verschiedene Ansichten

